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“Life Is a study in contrasts between
randomness and determinism:

from the chaos of biomolecular interactions
to the precise coordination of development,
living organisms are able to resolve these
two seemingly contradictory aspects

of their internal workings”

Raj & van Oudernaarden
Cell 2008



Photo credit, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University.

Raser & O'Shea, Science 2005



When large numbers of molecules are present,
chemical reactions may proceed in a predictable manner.

However, when only a few molecules of a specific type
exist in a cell, stochastic effects can become prominent.

Raser & O'Shea, Science 2005



Stochastic (from the Greek otoxoc for aim or guess)

IS an adjective that refers to

systems whose behavior is intrinsically non-deterministic,
sporadic and categorically not intermittent.

A stochastic process is one whose behavior is non-deterministic,
In that a system's subsequent state is determined both by the
process's predictable actions and by a random element.

From Wikipedia



Why Is gene expression considered a
stochastic process???



“Noise” In gene expression
refer to the measured level of variation in gene
expression among cells, regardless of source, within

a supposedly identical population

n = aly coefficient of variation
Estimate of overall population variability

Raser & O'Shea, 2005



Sources of variation in gene expression:

1. inherent stochasticity of biochemical processes that
are dependent on infrequent molecular events involving
small numbers of molecules

2. variation in gene expression owing to differences in
the internal states of a population of cells, either from
predictable processes or from a random process

3. subtle environmental differences, such as
morphogen gradients in multicellular development

4. ongoing genetic mutation, either random or directed

Raser & O'Shea, 2005



Gene expression vary
from cell to cell
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INDUCED SYNTHESIS OF ENZYMES IN BACTERIA ANALYZED
AT THE CELLULAR LEVEL

by
S. BENZER®

Service de Physiologie micvobienne, Institut Pastewr, Pavis (France)

INTRODUCTION

The kinetics of the induced synthesis of enzymes (“enzymic adaptation™) in micro-
organisms is usually studied by measurements upon cultures containing large numbers
of cells; an inducing substance is added and the consequent appearance of enzyme in
the culture is followed. Such measurements of the overall activity of the culture do not
reveal whether or not all cells participate equally and simultaneously in the synthesis
of enzyme. A knowledge of this factor is critical, however, for the proper interpretation
of the kinetics of enzyme formation.

Consider, for example, that a given cell might synthesize its maximum amount of
enzyme in an abrupt fashion, this transition occurring at random times for particular
cells. In such a case, the average measurement on the culture, indicating a gradual rise
in enzyme level, would bear little relation to the events in the enzyme-forming system
of each cell. One is not authorized to extrapolate the average kinetics to the cellular
level unless a uniform behavior of the population can be demonstrated? 12.14,10,

In this paper, a method is described for determining the cellular distribution of
an enzyme in a population of bacteria. This method is based upon the special relationship
between a bacteriophage and its (individual) host cell, which permits the use of phage
as a discriminating device. Application of this technique to the induced synthesis of
B-D-galactosidase in E. coli reveals that, under certain conditions, synthesis of this
enzyme proceeds uniformly in all the cells of a culture and therefore the average kinetics
applies at the cellular level. Under other commonly employed conditions, however, a
high degree of heterogeneity occurs, so that the average kinetics does not represent
the course of enzvme synthesis within individual cells.



Gene expression vary from cell to cell
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Beta-galactosidase production in individual cells: highly variable and random
Induction: increase the proportion of cells expressing the enzyme
(not every cell expression level)

Novick and Weiner, PNAS 1957



ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON*

By AAroN Novick AND MiLtoN WEINER

DEPARTMENT OF MICROBIOLOGY AND COMMITTEE ON BIOPHYSICS, UNIVERSITY OF CHICAGO

Communicated by W. H. Taliaferro, April 21, 19567

“(...) In any event, the existence of induced
Inheritable changes of the kind described
here raises the possibility that some
differences which arise in a clone of
organisms may be the result of changes in
cellular systems other than the primary
genetic endowment of the cell”

Novick and Weiner, PNAS 1957



Gene expression vary from cell to cell

Fig. 8. A magnified view of GL27 cells (10~7 M dexamethasone) in
the colony formation assay. The two upper arrows point to
morphologically flat cells, one of which (arrow 1) produces
(3-galactosidase after induction with dexamethasone and the other
(arrow 2) does not. The two lower arrows point to spindle shaped
cells, one (arrow 3) produces -galactosidase after induction with
dexamethasone and the other (arrow 4) does not.

Ko et al, Cell 1990



Theoretical work

Model gene expression using stochastic formulation
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Characterization of stochastic gene expression:
started with synthetic biology experiments

Synthetic Biology is

A) the design and construction of new biological parts, devices, and systems, and

B) the re-design of existing, natural biological systems for useful purposes.

http://syntheticbiology.org/



Registry of Standard |
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Welcome to the Registry of Standard Biological Parts.

The Registry is a continuously growing collection of genetic parts that can be mixed and matched to build synthetic biology devices and systems.

Founded in 2003 at MIT, the Registry is part of the Synthetic Biclogy community's efforts to make biology easier to engineer. It provides a resource of
available genetic parts to iGEM teams and academic labs. You can register a new lab here.

The Registry is based on the principle of "get some, give some”. Registry users benefit from using the parts and information available from the Registry in

designing their engineered biological systems. In exchange, the expectation is that Registry users will, in turn, contribute back information and data on existing
parts and new parts that they make to grow and improve this community resource.

Registry tools
= Search parts (?)
= Add a part
Catal ‘ 2 = Request a part
og of parts .
dg ] d Help Users & groups DNA repositories = Send parts to the Registry
evices

Sequence analysis

You'll notice some significant changes to the Registry recently. In particular, the Registry catalog of parts has been entirely redesigned to allow
for easier browsing of the available parts and devices. You can now browse parts and devices by type, by function, by chassis and by standard.
You'll also notice that the documentation and help pages for each class of parts have been greatly enhanced.

The Registry of Standard Biological Parts is *always* a work in progress. Please browse the new catalog and let us know what you think, or feel
free to edit and improve the pages further.

http://partsregistry.org/Main_Page



Repressilator: artificial clock

a Repressilator

P lac01

ampfi
tetR-lite

kan”®
:JS(;: 1_01 Py,
origin
lacl-lite
A cl-lite
P tet01
h

Protein lifetime/mRNA lifetime, f &

A

steady state
unstable

Reporter
P, tet01
S
gfp-aav
ColE1
w
=
=]
c
; £
£
8
1]
]
=
:
G
=
[T

10 10' 10 10° 10*
Maximum proteins per cell, & (x K,

10°

c
6,000 ;
D
4]
O 4000
D
a
2
5 2,000 |
o
R\
0 500
Time (min)
a b
160 160
100+ ~J1 100
= 50
%
d a
400" 150
100
200
50
% %9

6,000

4,000

2,000

1,000 0
b
|
|

. I
|
xuﬂjrﬁ\auﬁJ

200 400

200 400 800
Time (min)

' sdu
Time (min)

4,000 o
20000 A TR S
0- .
0 200 400 600

Elowitz & Leibler, Nature 2000



Engineering stability

Negative feedback
loops to control noise
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How can we study the “noise” in gene expression?

Can we count the total number of molecules in a single cell?



Experimental developments:
single molecule view of gene expression

Protein levels

GFP (and other fluorescent probes)
FACS — Fluorescent Activated Cell Sorting
Live cell microscopy

MRNA levels

Single cell quantitative PCR

Single cell microarrays

In situ fluorescent PCR

FISH — Fluorescent in situ hybridization
MS2

Microfluidics



Table 1. Summary of the most common methods for mRNA quantification and transcription analysis

probe

amplification/
sequencing

Northern Microarray Real-time PCR RNA seq ChlIP-ChIP FISH MSs2
Ensemble Ensemble Ensemble Ensemble Ensemble Single cell Single cell
Determining
mRNA expression
Measuring Total mRNA Total mRNA Total mRNA Total mRNA Total mRNA Total mRNA
Detection method Blotting to RNA labeling/ Reverse mRNA Hybridization using Insertion of
membraneg/ hybridization transcription/ fragmentation/ fluorescent probes repeats/binding
hybridization to array PCR adaptor of fluorescent
with synthetic ligation/ protein

mRNA guantification Relative intensity Relative intensity Absolute Single-molecule Single-molecule Single-molecule
numbers counting counting counting
requires
standard

Number of genes Multiple Genome wide Many Genome wide 1-3 per cell 1 per cell

Measuring transcription

Measuring

Polymerase
association

Nascent mRNAs

Nascent mRNAs

Detection method

Fragmentation/
IP/amplification/
hybridization

to array

Hybridization
using fluorescent
probes

Insertion of
repeats/Binding
of fluorescent
protein

Quantification

Relative changes

Counting of

Relative intensity|

in polymerase nascent of mRNA signal
loading mRNAs
Number of genes Genome wide 1-3 per cell 1 per cell

Larson et al, Trends in Cell Biology 2009



(a)

(b)

RNA detection using FISH

RNA detection using the MS2 system
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Microfluidics
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So far, we know that noise exists, can be
detected and even engineered to be controlled.

...but what are the causes of stochastic gene
expression?



Causes of stochastic gene expression???
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GENET||GENE1|:GENE2;  Noise in populations
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Noise in prokaryotic gene expression
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Advantage of couting molecules

(a) DNA RNA Protein
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Probability distribution of molecules corresponding to each
stage of the central dogma, for a single gene

Larson et al, 2009



Theoretical models
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Consequences of noise in gene expression
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Control of noise



Afternoon discussion:

Functional roles for noise In
genetic circuits

Eldar & Elowitz, Nature, 2010



Figure 1: Gene expression noise is ubiquitous, and affects diverse systems at several levels.
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Figure 2: Frequency modulation of stochastic nuclear localization bursts enables coordination of gene regulation.
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Figure 3: Probabilistic differentiation.
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Figure 4: Roles of noise in evolution.
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